Table 4. Calculation of some structure factors in four hypotheses

	Hypothesis	Method of calculation of F	Result
(1)	Tetragonal	$\frac{1}{2} \mathrm{C}_{5}$ placed in general position in $I 4_{1} / a m d$	$R=0.20$
(2)	Orthorhombic pseudotetragonal	C_{5} placed in general position in Fddd using coordinations corresponding to those in (1)	Calculated F 's do not comply with observed Laue symmetry
(3)	Orthorhombic twin	$\left\|F_{c}\right\|=\left(F_{1}^{2}+F_{2}^{2}\right)^{\frac{1}{2}} / \sqrt{2},$ where F_{1} is calculated as in (2) and F_{2} is calculated from the same structure reflected in (110)	$R=0.20$
(4)	Combination (1) and (3)	F taken as average of that calculated from (1) and (3)	$R=0.17$

even when considerably reduced in magnitude by applying the abnormally large 'temperature corrections'. No coordinates for C_{5} could be found which would remove the discrepancies between $F_{H 00}$ and $F_{0 H 0}$.

The above considerations suggest that twinning of the orthorhombic (pseudo-tetragonal) crystal, say by reflection in (ll0), might bring about the required tetragonal symmetry of the reflections. The ortho-rhombic-twin hypothesis implies perfectly ordered domains of at least a few hundred cells, in which the space group $F d d d$ applies.

The tetragonal-crystal hypothesis implies random distribution of right-handed and left-handed molecules even within a single cell.

The structure factors obtained by averaging those from the two hypotheses correspond to a third possibility: a combination of the two, i.e. domains of
orthorhombic individual 1 and of orthorhombic individual 2 with interspersed cells having the random disposition of C_{5}. Structure factors calculated for the various possibilities were compared for twenty reflections (Table 4).

The author wishes to express his appreciation for the guidance and instruction he received from Prof. J. D. H. Donnay and from Dr Gabrielle Donnay. Thanks are also due to Prof. Alsoph H. Corwin and Dr Winslow S. Caughey for their interest in this work.

This study has been made possible by the support of the National Science Foundation.

Reference

Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841 .

The Crystal Structure of Ruthenocene*

By George L. Hardgrove and David H. Templeton
Department of Chemistry and Radiation Laboratory, University of California, Berkeley, California, U.S.A.

(Received 23 June 1958)
Dicyclopentadienylruthenium, or ruthenocene, crystallizes in the orthorhombic space group Pnma with $a=7 \cdot 13, b=8.99, c=12 \cdot 81 \AA$. There are four $\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ molecules per unit cell. The ruthenium atoms form approximately a face-centered lattice, and the cyclopentadienyl rings lie in an eclipsed configuration with respect to each other about each ruthenium atom. The structure was refined by Fourier and least-squares methods with 791 independent reflections. The rutheniumcarbon distance is $2.21 \AA$ and the carbon-carbon bond distance in the rings averages $1.43 \AA$.

Introduction

X-ray investigation by Fischer and his collaborators (Pfab \& Fischer, 1953, Weiss \& Fischer, 1955) indicated that the dicyclopentadienyl compounds of iron,

[^0]cobalt, nickel, chromium, vanadium and magnesium are isomorphous, crystallizing in space group $P 2_{1} / c$. Dunitz, Orgel \& Rich (1956) have reported a threedimensional analysis of the iron compound. The present paper reports a three-dimensional analysis of dicyclopentadienylruthenium, which unexpectedly was found to have a quite different orthorhombic structure.

Experimental

Ruthenocene crystals were kindly provided by Dr J. H. Richards. The compound was prepared by reaction of ruthenium trichloride with sodium cyclopentadienide in tetrahydrofuran, was purified by chromatography over alumina, and was recrystallized from benzene-ligroin ($60-90{ }^{\circ} \mathrm{C}$.).

A nearly cylindrical needle of ruthenocene was aligned about the [010] axis, and multiple-film Weissenberg photographs through the fifth layer were taken with $\mathrm{Cu} K \alpha$ X-rays. Additional reflections were observed on photographs taken of a crystal aligned about the [011] direction. The intensities on the multiple films were estimated by visual comparison with a standard. There were 586 observed reflections and 205 reflections too weak to be observed in the portion of the reciprocal lattice photographed.

An absorption correction was applied to the $h 0 l$ data according to the method of Bradley (Klug \& Alexander, 1954) for cylindrical crystals with $\mu r=0.8$. The same absorption factor table was used for the higher layers, but the errors introduced by this method are not expected to exceed 6% of the I_{0} values on the highest layers. Lorentz and polarization corrections were made in the usual manner.

Unit cell and space group

The dimensions of the orthorhombic unit cell were determined from measurements made on quartz calibrated zero layer films assuming $a=4.913 \AA$ for quartz. The standard quartz crystal was also checked with a precision of about one part in 3000 against a powder pattern of sodium chloride. For ruthenocene:
$a=7 \cdot 13, \quad b=8 \cdot 99, \quad c=12 \cdot 81 \cdot \AA, \quad$ each $\pm 0 \cdot 02 \AA$.
The X-ray density is 1.876 g.cm..$^{-3}$, assuming four molecules per unit cell. The systematic absences sug-
gested either Pnma or $P n 2_{1} a$ as possible space groups. The structure analysis proceeded on the assumption of the higher symmetry, and the final agreement justified this assumption.

Determination and refinement of the structure

The strong reflections with h, k and l all even or all odd suggested that the ruthenium atoms lie in a facecentered lattice. In Pnma this is possible only with atoms on mirror planes in special positions $4(c)$:

$$
x, \frac{1}{4}, z ; \quad \bar{x}, \frac{3}{4}, \bar{z} ; \quad \frac{1}{2}-x, \frac{3}{4}, \frac{1}{2}+z ; \quad \frac{1}{2}+x, \frac{1}{4}, \frac{1}{2}-z,
$$

with special values of x and z; for example at $\frac{1}{4}, \frac{1}{4}, \frac{1}{2}$ and its equivalent positions. An electron-density projection using as coefficients the strong $h=2 n$ and $k=2 n$ reflections in the $h 0 l$ zone suggested that the cyclopentadienyl rings are perpendicular to the mirror plane.

With this ruthenium structure and the rings perpendicular to the mirror plane, either a staggered carbon structure with a non-crystallographic center of symmetry at the ruthenium atom or an eclipsed structure with a non-crystallographic mirror plane between the rings is possible. In either case, the carbon atoms are distributed in two sets 4 (c) (listed above) and four general sets $8(d)$:
$\pm\left(x, y, z ; x, \frac{1}{2}-y, z ; \frac{1}{2}+x, y, \frac{1}{2}-z ; \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z\right)$.
Sections of the three-dimensional electron-density function were calculated using signs of the structure factors based on ruthenium alone. These sections showed maxima of electron density at positions consistent with an eclipsed structure and the absence of such maxima at positions corresponding to a staggered structure. These and subsequent Fourier calculations were made with the IBM 701 computer and the program completed by Dodge (1958).

Table 1. Atomic coordinates, standard deviations and temperature factors

(a) Results of least-squares refinement										
		x	y	z	σ_{x}		σ_{y}		σ_{z}	$B\left(\AA^{2}\right)$
Ru		0.23705	4	$0 \cdot 50419$	$0 \cdot 00026$		-		$0 \cdot 00010$	$\mathrm{I} \cdot 36$
C_{1}		0.5135	$\frac{1}{4}$	0.5779	0.0029		-		0.0017	$2 \cdot 89$
C_{2}		$0 \cdot 2529$	$0 \cdot 3290$	$0 \cdot 6711$	0.0020		0.0024		0.0014	$3 \cdot 00$
C_{3}		$0 \cdot 4125$	$0 \cdot 3768$	$0 \cdot 6147$	0.0021		0.0021		0.0012	2.85
C_{4}		$0 \cdot 2485$	4	0.3304	0.0027		-		0.0019	$2 \cdot 63$
C_{5}		0.9896	$0 \cdot 3315$	$0 \cdot 4180$	0.0017		$0 \cdot 0020$		0.0010	$2 \cdot 28$
C_{6}		0•1453	$0 \cdot 3806$	$0 \cdot 3681$	0.0019		$0 \cdot 0021$		0.0011	$2 \cdot 70$
(b) Results of Fourier difference sections					(c) Final coordinates					
		x	y	z	x			y	z	
	C_{1}	$0 \cdot 5177$	4	0.5797	Ru*	$0 \cdot 2370$		$\frac{1}{4}$	0.5042	
	C_{2}	$0 \cdot 2455$	0.3309	$0 \cdot 6655$	C_{1}	0.516		4	$0 \cdot 579$	
	C_{3}	$0 \cdot 4102$	$0 \cdot 3797$	0.6124	C_{2}	$0 \cdot 249$		$0 \cdot 330$	$0 \cdot 668$	
	C_{4}	$0 \cdot 2553$	$\stackrel{1}{4}$	0.3316	C_{3}	0.411		$0 \cdot 378$	$0 \cdot 614$	
	C_{5}	0.9889	$0 \cdot 3298$	0.4189	C_{4}	$0 \cdot 252$		$\frac{1}{4}$	$0 \cdot 331$	
	C_{6}	$0 \cdot 1510$	$0 \cdot 3809$	$0 \cdot 3688$	C_{5}	0.989		0.331	0.418	
					C_{6}	0.148		$0 \cdot 381$	$0 \cdot 368$	
				* Least-squares only.						

Three-dimensional least-squares refinements were then carried out on the IBM 650 computer with the program known as LS-II (Senko, 1957). Structure factors were based, in the final set of calculations, on all atoms including hydrogen. Hydrogen atoms were assumed to be $1.08 \AA$ from carbon atoms in the plane of the ring. The carbon and ruthenium atomic parameters and individual isotropic temperature factors, and an over-all scale factor were refined. A weighting scheme similar to that of Hughes (1941) was used. The weight w was taken as $\left(F_{o}^{2}\right)^{-1}$ or as a constant ($\left.16 F^{2}{ }_{\text {min. }}\right)^{-1}$ if the uncorrecte dintensity was greater or less than 16 times the minimum observed value. For reflections too weak to be observed, the quantity $F_{o}-F_{c}$ was set equal to zero in the sums if $F_{c}<F_{\text {min. }}$ or equal to $-F_{c}$ if $F_{c}>F_{\text {min }}$.

After the third cycle the calculated shifts were less than the standard deviations, and the refinement was concluded there. The coordinates, their standard deviations, and the temperature factors are listed in Table $1(a)$. The 'unreliability factors' at this point were:

$$
\begin{aligned}
& R_{1}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| \div \Sigma\left|F_{o}\right|=0.098 . \\
& R_{2}=\left(\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \div \Sigma F_{o}^{2}\right)^{\frac{1}{2}}=0 \cdot 127 . \\
& R_{3}=\left(\Sigma w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \div \Sigma w F_{o}^{2}\right)^{\frac{1}{2}}=0.162 .
\end{aligned}
$$

The atomic positions of carbon were also determined from a three-dimensional difference Fourier series with coefficients $F_{o}-F_{\text {Ru }}$ based on the best ruthenium position as determined from the least-

Table 2. Interatomic distances, standard deviations and bond angles
(a) Ruthenium-carbon distances

$\mathrm{Ru}-\mathrm{C}_{1}$	$2.205 \pm 0.021 \AA$	$\mathrm{Ru}-\mathrm{C}_{5}$	$2 \cdot 204-0.015$
$\mathrm{Ru}-\mathrm{C}_{2}$	2.223 ± 0.019	$\mathrm{Ru}-\mathrm{C}_{6}$	$2 \cdot 193 \pm 0.016$
$\mathrm{Ru}-\mathrm{C}_{3}$	$2 \cdot 200 \pm 0.016$	Average	2.21 ± 0.01
$\mathrm{Ru}-\mathrm{C}_{4}$	2.220 ± 0.024		

(b) Carbon-carbon distances in the rings

$\mathrm{C}_{1}-\mathrm{C}_{3}$	$1 \cdot 443 \pm 0.021 \AA$	$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.378 ± 0.018
$\mathrm{C}_{2}-\mathrm{C}_{3}$	$\mathrm{I} \cdot 420 \pm 0.021$	$\mathrm{C}_{5_{5}}-\mathrm{C}_{5^{\prime}}$	1.455 ± 0.036
$\mathrm{C}_{2}-\mathrm{C}_{2^{\prime}}$	1.437 ± 0.044	Average	$1 \cdot 43 \pm 0.01$
$\mathrm{C}_{4}-\mathrm{C}_{6}$	1.470 ± 0.021		

(c) Carbon-carbon distances between the rings

$\mathrm{C}_{1}-\mathrm{C}_{4}$	$3.689 \pm 0.031 \AA$	$\mathrm{C}_{3}-\mathrm{C}_{6}$	3.659 ± 0.021
$\mathrm{C}_{2}-\mathrm{C}_{5}$	3.698 ± 0.022	Average	3.68 ± 0.01

(d) Carbon bond angles in the rings

$\mathrm{C}_{3}-\mathrm{C}_{1}-\mathrm{C}_{3}{ }^{\text {, }}$	$106{ }^{\circ}$	9^{\prime}	$\mathrm{C}_{4}-\mathrm{C}_{6}-\mathrm{C}_{5}$	107°	45'
$\mathrm{C}_{1}-\mathrm{C}_{3}-\mathrm{C}_{2}$	109	5	$\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{5}$,	108	57
$\mathrm{C}_{3}-\mathrm{C}_{2}-\mathrm{C}_{2}$,	107	50	Value for	five-fold	
$\mathrm{C}_{6}-\mathrm{C}_{4}-\mathrm{C}_{6}{ }^{\prime}$	106	15	symmetry:	$108{ }^{\circ}$	0^{\prime}

(e) Carbon-ruthenium-carbon angles

$\mathrm{C}_{2}-\mathrm{Ru}-\mathrm{C}_{2^{\prime}}$	$37^{\circ} 43^{\prime}$	$\mathrm{C}_{5}-\mathrm{Ru}-\mathrm{C}_{5^{\prime}}$	38°	33^{\prime}
$\mathrm{C}_{2}-\mathrm{Ru}-\mathrm{C}_{3}$	37	27	$\mathrm{C}_{5}-\mathrm{Ru}-\mathrm{C}_{6}$	36
$\mathrm{C}_{1}-\mathrm{Ru}-\mathrm{C}_{3}$	38	15	$\mathrm{C}_{4}-\mathrm{Ru}-\mathrm{C}_{6}$	38
C_{1}	54			

Value for five-fold symmetry with the average distances:

Fig. 1. Crystal structure of ruthenocene.

Fig. 2. Distances in \AA and angles (a) between carbon atoms and (b) between ruthenium and carbon in the ruthenocene molecule.
squares refinements. The signs of these coefficients were calculated from the best carbon and hydrogen structure. For the atoms in general positions, sections were calculated perpendicular to the [100] and [001] directions at the levels of the centers of the atoms. The two atoms in special positions were located from a section at $y=\frac{1}{4}$. Each maximum was located by a least-squares fit of a paraboloid to the logarithm of the electron density at the nine grid points nearest the peak. The values were corrected for series termination

Table 3. Observed and calculated structure factors
The unobserved reflections appear in the table with $F_{o}=0$.

error by comparison with a similar Fourier calculation using the calculated structures for the carbon and hydrogen positions as coefficients. The corrected coordinates are listed in Table $1(b)$. The simple average of the atomic parameters from the least-squares and Fourier methods is given in Table l(c). In twelve of the sixteen cases the two methods differ from the average by less than the standard deviation.

Discussion of the structure

The carbon rings are the bases of a pentagonal prism with ruthenium at its center. The two rings are crystallographically independent, and each contains three independent carbon-carbon bonds. These bonds (Table 2) are within a standard deviation of the average bond distance in all cases except the bonds at C_{6}. However, if C_{6} be moved one standard deviation in the appropriate direction, then the carbon-carbon bonds are all equal within the standard deviations. The deviations from five equal bonds in each ring are slightly less than those reported for ferrocene (Dunitz, Orgel \& Rich, 1956) and somewhat greater than those reported for bis-[cyclopentadienyl molybdenum tricarbonyl] (Wilson \& Shoemaker, 1957). To our accuracy the bond angles are consistent with the expected five-fold symmetry of the molecule.

The carbon-metal distance of $2 \cdot 21 \AA$ in ruthenocene as determined by this research is larger than the $2.05 \AA$ reported for ferrocene, as is to be expected. The carbon-carbon distance of $1 \cdot 43 \AA$ reported here is in agreement with the $1.42 \AA$ found in bis-[cyclopentadienyl molybdenum tricarbonyl] and the $1.41 \AA$ found in ferrocene. The average inter-ring distance in ruthenocene is $3.68 \AA$ compared to $3.32 \AA$ in ferrocene.

The packing of the molecules in layers perpendicular to the b axis is similar for ruthenocene and ferrocene. However, the stacking of the layers differs in the two compounds. In ruthenocene, Fig. 1, a hydrogen atom from one molecule appears surrounded by a cage of four hydrogens from a neighboring molecule as if the molecules were interlocking gears. The reason for the difference in arrangements may be that the smaller inter-ring distance in ferrocene with stronger carboncarbon repulsions prevents the molecules from taking the eclipsed configuration required for this interlocking gear arrangement, which presumably is a more favorable packing of the molecules.

We thank Dr Richards for providing the crystals Mrs Helena W. Ruben for assistance in the laboratory. and Dr Richard P. Dodge, Dr Robert E. Jones, Dr Michael E. Senko and Dr Allan Zalkin for the use c. their computer codes.

References

Dodge, R. P. (1958). Ph.D. Dissertation, University of California, Berkeley.
Dunitz, J. D., Orgel, L. E. \& Rich, A. (1956). Acta Cryst. 9, 373.
Hughes, E. (1941). J. Amer. Chem. Soc. 63, 1737.
Klug, H. P. \& Alexander, L. E. (1954). X-Ray Diffraction Procedures, p. 155. New York: Wiley.
Pfab, W. P. \& Fischer, E. O. (1953). Z. anorg. Chem. 274, 317.
Senko, M. E. (1957). Ph.D. Dissertation, University of California, Berkeley.
Weiss, E. \& Fischer, E. O. (1955). Z. anorg. Chem. 278, 219.
Wilson, F. C. \& Shoemaker, D. P. (1957). J. Chem. Phys. 27, 809.

Zur Polymorphie von Cäsiumchlorid in Aufdampfschichten

Von K. Meyerhoff und J. Ungelenk
Institut für Angewandte Physik der Universität Hamburg, Deutschland

(Eingegangen am 1 Juli 1958)
Thin sheets of CsCl evaporated on an amorphous carrier film were shown by electron diffraction to have the NaCl -type structure. As in the deposition of CsCl on a single crystal carrier the NaCl . type structure was obtained only by slow evaporation at room temperature; it transforms by heating to the CsCl-type structure. The lattice constant of the NaCl-type was found to be $6.948 \AA$, that of the CsCl-type $4 \cdot 120 \AA$. (Note added in proof.-Die NaCl-Modifikation ist also eine instabile Form, die entsteht, sobald geringere Energiemengen zur Verfügung stehen. Eine Unterlage vom NaClGittertyp ist hingegen nicht Voraussetzung für die Entstehung der instabilen NaCl-Modifikation).

1. Problemstellung

Die Cäsium- und Thalliumhalogenide ($\mathrm{CsCl}, \mathrm{CsBr}$, CsJ, TlCl , TlBr und TlJ), die normalerweise im CsClGittertyp auftreten, kristallisieren nach Elektronen-interferenz-Untersuchungen von Schulz (1951) beim

Aufdampfen auf Einkristall-Spaltflächen vom $\mathrm{NaCl}-$ Typ ($\mathrm{LiF}, \mathrm{NaCl}, \mathrm{KBr}$) im Gittertyp der Unterlage, sind also polymorph. Lüdemann (1957) hat die Bedingungen für das Auftreten des NaCl -Typs auf solchen Unterlagen genauer untersucht und folgendes

[^0]: * This research was supported by the U.S. Atomic Energy Commission.

