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Table 4. Calculation of some structure factors tn four hypotheses
Method of calculation of F Result
4 C; placed in general position R = 0-20
in I4,/amd
C; placed in general position
in Fddd using coordinations
corresponding to those in (1)
|Fe| = (F{+F3)iy2,
where F, is calculated as in

(2) and F, is calculated from
the same structure reflected

Hypothesis
(1) Tetragonal

(2) Orthorhombic pseudo-
tetragonal

Calculated F’s do not comply with
observed Laue symmetry

(3) Orthorhombic twin R = 0-20

in (110)
(4) Combination (1) and (3)

F taken as average of that

= 0-17

calculated from (1) and (3)

even when considerably reduced in magnitude by
applying the abnormally large ‘temperature correc-
tions’. No coordinates for C; could be found which
would remove the discrepancies between Fg,, and
Fong.

The above considerations suggest that twinning of
the orthorhombic (pseudo-tetragonal) crystal, say by
reflection in (110), might bring about the required
tetragonal symmetry of the reflections. The ortho-
rhombic-twin hypothesis implies perfectly ordered
domains of at least a few hundred cells, in which the
space group Fddd applies.

The tetragonal-crystal hypothesis implies random
distribution of right-handed and left-handed mole-
cules even within a single cell.

The structure factors obtained by averaging those
from the two hypotheses correspond to a third pos-
sibility: a combination of the two, i.e. domains of
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orthorhombic individual 1 and of orthorhombic in-
dividual 2 with interspersed cells having the random
disposition of C;. Structure factors calculated for the
various possibilities were compared for twenty re-
flections (Table 4).
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Dicyclopentadienylruthenium, or ruthenocene, erystallizes in the orthorhombic space group Pnma

with @ = 7-13, b = 899, ¢ = 12:81 A.

There are four Ru(C;H;), molecules per umit cell.

The ruthenium atoms form approximately a face-centered lattice, and the eyelopentadienyl rings
lie in an eclipsed configuration with respect to each other about each ruthenium atom. The structure
was refined by Fourier and least-squares methods with 791 independent reflections. The ruthenium-—
carbon distance is 2-21 A and the carbon-carbon bond distance in the rings averages 1-43 A.

Introduction

X.ray investigation by Fischer and his collaborators
(Pfab & Fischer, 1953, Weiss & Fischer, 1955) in-
dicated that the dicyclopentadienyl compounds of iron,

* This research was supported by the U.S. Atomic Energy
Commission.

cobalt, nickel, chromium, vanadium and magnesium
are isomorphous, crystallizing in space group P2,/c.
Dunitz, Orgel & Rich (1956) have reported a three-
dimensional analysis of the iron compound. The present
paper reports a three-dimensional analysis of dicyclo-
pentadienylruthenium, which unexpectedly was found
to have a quite different orthorhombic structure.
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Experimental

Ruthenocene crystals were kindly provided by Dr
J. H. Richards. The compound was prepared by re-
action of ruthenium trichloride with sodium ecyeclo-
pentadienide in tetrahydrofuran, was purified by
chromatography over alumina, and was recrystallized
from benzene-ligroin (60-90 °C.).

A nearly cylindrical needle of ruthenocene was
aligned about the [010] axis, and multiple-film Weis-
senberg photographs through the fifth layer were
taken with Cu K« X-rays. Additional reflections were
observed on photographs taken of a crystal aligned
about the [0l1] direction. The intensities on the
multiple films were estimated by visual comparison
with a standard. There were 586 observed reflections
and 205 reflections too weak to be observed in the
portion of the reciprocal lattice photographed.

An absorption correction was applied to the A0l
data according to the method of Bradley (Klug &
Alexander, 1954) for cylindrical crystals with ur=0-8.
The same absorption factor table was used for the
higher layers, but the errors introduced by this method
are not expected to exceed 6%, of the I, values on the
highest layers. Lorentz and polarization corrections
were made in the usual manner.

Unit cell and space group

The dimensions of the orthorhombic unit cell were
determined from measurements made on quartz
calibrated zero layer films assuming a = 4-913 A for
quartz. The standard quartz crystal was also checked
with a precision of about one part in 3000 against a
powder pattern of sodium chloride. For ruthenocene:

a="713, b=2899, c¢=12814, each 002 A.

The X-ray density is 1-876 g.cm.=3, assuming four
molecules per unit cell. The systematic absences sug-

gested either Pnma or Pn2,a as possible space groups.
The structure analysis proceeded on the assumption
of the higher symmetry, and the final agreement
justified this assumption.

Determination and refinement of the structure

The strong reflections with &, & and I all even or all
odd suggested that the ruthenium atoms lie in a face-
centered lattice. In Pnma this is possible only with
atoms on mirror planes in special positions 4(c):

z, %,2’ .71—3,%,2, %—x,%’ %+z; %+$, %’%_‘Z’

with special values of # and z; for example at }, %, 4
and its equivalent positions. An electron-density pro-
jection using as coefficients the strong % = 2n and
k = 2n reflections in the %0l zone suggested that the
cyclopentadienyl rings are perpendicular to the mirror
plane.

With this ruthenium structure and the rings per-
pendicular to the mirror plane, either a staggered
carbon structure with a non-crystallographic center of
symmetry at the ruthenium atom or an eclipsed struc-
ture with a non-crystallographic mirror plane between
the rings is possible. In either case, the carbon atoms
are distributed in two sets 4(c) (listed above) and four
general sets 8(d):

:}:(.’L’, Yz %_y’ z; 12.+x, Y, %—z; J2"+x: %~y7 %—Z) .

Sections of the three-dimensional electron-density
function were calculated using signs of the structure
factors based on ruthenium alone. These sections
showed maxima of electron density at positions con-
sistent with an eclipsed structure and the absence of
such maxima at positions corresponding to a staggered
structure. These and subsequent Fourier calculations
were made with the IBM 701 computer and the
program completed by Dodge (1958).

Table 1. Atomic coordinates, standard deviations and temperature factors

(a) Results of least-squares refinement

z y z
Ru 0-23705 } 0-50419
C, 0-5135 } 0-5779
C, 0-2529 0-3290 0-6711
Cy 0-4125 0-3768 0-6147
C, 0-2485 0-3304
Cs 0-9896 0-3315 0-4180
Cq 0-1453 0-3806 0-3681
(b) Results of Fourier difference sections
z y z
C, 0-5177 3 0-5797
C, 0-2455 0-3309 0-6655
C, 0-4102 0-3797 0-6124
C, 0-2553 3 0-3316
C; 0-9889 0-3298 0-4189
Ce 0-1510 0-3809 0-3688

Oz ay o B (A2)
0-00026 — 0-00010 1-36
0-0029 — 0-0017 2-89
0-0020 0-0024 0-0014 3-00
0-0021 0-0021 0-0012 2-85
0-0027 —_ 0-0019 2:63
0-0017 0-0020 0-0010 2:28
0-0019 0-0021 0-0011 2-70

(c) Final coordinates

x y K4
Ru* 02370 3 0-5042
c, 0-516 3 0-579
c, 0-249 0-330 0-668
C, 0-411 0-378 0-614
C, 0-252 3 0-331
o 0-989 0-331 0-418
Cs 0-148 0-381 0-368

* Least-squares only.
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Three-dimensional least-squares refinements were
then carried out on the IBM 650 computer with the
program known as LS-II (Senko, 1957). Structure
factors were based, in the final set of calculations,
on all atoms including hydrogen. Hydrogen atoms
were assumed to be 1-08 A from carbon atoms in the
plane of the ring. The carbon and ruthenium atomic
parameters and individual isotropic temperature fac-
tors, and an over-all scale factor were refined. A
weighting scheme similar to that of Hughes (1941)
was used. The weight w was taken as (F%)-1 or as
a constant (16 F2., )1 if the uncorrecte dintensity
was greater or less than 16 times the minimum ob-
served value. For reflections too weak to be observed,
the quantity F,— F. was set equal to zero in the sums
if Fo < Fpyy or equal to —Fe if Fo > Fp, .

After the third cycle the calculated shifts were less
than the standard deviations, and the refinement was
concluded there. The coordinates, their standard
deviations, and the temperature factors are listed in
Table 1(az). The ‘unreliability factors’ at this point
were:

B, = X||Fo|—|F.||=-X|F,| = 0-098 .
By = (Z(|Fo| —|Fe|)2-ZF2%)t = 0-127 .
By = (Zw(|Fo|—|Fe|)*-ZwF3Y = 0-162 .

The atomic positions of carbon were also deter-
mined from a three-dimensional difference Fourier
series with coefficients F,—Fp, based on the best
ruthenium position as determined from the least-

Table 2. Interatomic distances, standard deviations
and bond angles

(2) Ruthenium—carbon distances

Ru-C, 2:205+0-021 A Ru-C;  2:204-0-015
Ru-C,  2-22340-019 Ru-C;  2:193+£0-016
Ru-C;  2-20040-016 Average 2-21 40-01
Ru-C, 2-220+0-024

(b) Carbon—carbon distances in the rings

C—C, 1:443 +0-021 A Cs—Cs 1.378+0-018
C,-C, 1-42040-021 C;—Cs  1-45540-036
Co—Cor 1:4374-0-044 Average 1:43 4-0-01
C—Cq 1-470 4. 0-021

(¢) Carbon-carbon distances between the rings

C-C, 368940031 A CyCs  3:65940-021
Cy-C;,  3:69810-022 Average 368 10-01
(d) Carbon bond angles in the rings
Cy—C,~Cy’ 106° 9 C—Cy—C,4 107° 45’
C;-Cy—C, 109 5 C4—C,—Cyr 108 57

C3—Cy—Cyr 107 50 Value for five-fold
Ce—Cy—C¢ 106 15 symmetry : 108° 0’
(¢) Carbon-ruthenium-carbon angles
Cy—Ru—Cy 37° 48’ Cy-Ru—Cy- 38° 33’
Cp-Ru-C, 37 27 C;-Ru-C, 36 32
C-Ru-C, 38 15 Cy-Ru—Cj 38 54

Value for five-fold symmetry with the average distances:
37° 547

ﬂi o°
5 7o

C —=

a

Fig. 1. Crystal structure of ruthenocene.

(b)

Fig. 2. Distances in A and angles (a) between carbon atoms
and (b) between ruthenium and carbon in the ruthenocene
molecule.

squares refinements. The signs of these coefficients
were calculated from the best carbon and hydrogen
structure. For the atoms in general positions, sections
were calculated perpendicular to the [100] and [001]
directions at the levels of the centers of the atoms.
The two atoms in special positions were located from
a section at y = }. Each maximum was located by a
least-squares fit of a paraboloid to the logarithm of
the electron density at the nine grid points nearest the
peak. The values were corrected for series termination
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Table 3. Observed and calculated structure factors

The unobserved reflections appear in the table with F, =

k ¢ F F h k¢ FF h ok ¢
o e o ‘e Fo Fe LI IR A A bk ¢ F B,
o 2 3 0 2 &4 127 115« 0 31 5 28 22« o
0 3 21 30~ 0 2 6 126 110- o 3 7 51 3l Po TN iy H
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1« 51 4o 12 T o7 188 0 o4 1 e 1z - 5 o2 32 81 T-
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error by comparison with a similar Fourier calculation
using the calculated structures for the carbon and
hydrogen positions as coefficients. The corrected co-
ordinates are listed in Table 1(b). The simple average
of the atomic parameters from the least-squares and
Fourier methods is given in Table 1(c). In twelve of
the sixteen cases the two methods differ from the
average by less than the standard deviation.

Discussion of the structure

The carbon rings are the bases of a pentagonal prism
with ruthenium at its center. The two rings are
crystallographically independent, and each contains
three independent carbon—carbon bonds. These bonds
(Table 2) are within a standard deviation of the
average bond distance in all cases except the bonds
at Cq. However, if Cg be moved one standard deviation
in the appropriate direction, then the carbon-carbon
bonds are all equal within the standard deviations.
The deviations from five equal bonds in each ring are
slightly less than those reported for ferrocene (Dunitz,
Orgel & Rich, 1956) and somewhat greater than
those reported for bis-[cyclopentadienyl molybdenum
tricarbonyl] (Wilson & Shoemaker, 1957). To our
accuracy the bond angles are consistent with the
expected five-fold symmetry of the molecule.

The carbon—-metal distance of 2-21 A in ruthenocene
as determined by this research is larger than the
2-05 A reported for ferrocene, as is to be expected.
The carbon-carbon distance of 1:43 A reported here
is in agreement with the 1-42 A found in bis-[cyclo-
pentadienyl molybdenum tricarbonyl] and the 1-41 A
found in ferrocene. The average inter-ring distance in
ruthenocene is 3-68 A compared to 3-32 A in ferrocene.

Acta Cryst. (1959). 12, 32

The packing of the molecules in layers perpendicular
to the & axis is similar for ruthenocene and ferrocene.
However, the stacking of the layers differs in the two
compounds. In ruthenocene, Fig. 1, a hydrogen atom
from one molecule appears surrounded by a cage of
four hydrogens from a neighboring molecule as if the
molecules were interlocking gears. The reason for the
difference in arrangements may be that the smaller
inter-ring distance in ferrocene with stronger carbon—
carbon repulsions prevents the molecules from taking
the eclipsed configuration required for this inter-
locking gear arrangement, which presumably is a more
favorable packing of the molecules.

We thank Dr Richards for providing the crystals
Mrs Helena W. Ruben for assistance in the laboratory.
and Dr Richard P. Dodge, Dr Robert E. Jones, Dr
Michael E. Senko and Dr Allan Zalkin for the use c.
their computer codes.
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Zur Polymorphie von Cdsiumchlorid in Aufdampfschichten

Von K. MEYERHOFF UND J. UNGELENK

Institut fiir Angewandte Physik der Universitit Hamburg, Deutschland

(Eingegangen am 1 Juli 1958)

Thin sheets of CsCl evaporated on an amorphous carrier film were shown by electron diffraction

to have the NaCl-type structure. As in the deposition of CsCl on a single crystal carrier the NaCl-
type structure was obtained only by slow evaporation at room temperature; it transforms by
heating to the CsCl-type structure. The lattice constant of the NaCl-type was found to be 6-948 A,
that of the CsCl-type 4-120 A. (Note added in proof.—Die NaCl-Modifikation ist also eine instabile
Form, die entsteht, sobald geringere Energiemengen zur Verfiigung stehen. Eine Unterlage vom NaCl-
Gittertyp ist hingegen nicht Voraussetzung fiir die Entstehung der instabilen NaCl-Modifikation).

1. Problemstellung

Die Céisium- und Thalliumhalogenide (CsCl, CsBr, Csd,
TICl, TIBr und T1J), die normalerweise im CsCl-
Gittertyp auftreten, kristallisieren nach Elektronen-
interferenz-Untersuchungen von Schulz (1951) beim

Aufdampfen auf Einkristall-Spaltflichen vom NaCl-
Typ (LiF, NaCl, KBr) im Gittertyp der Unterlage,
sind also polymorph. Liidemann (1957) hat die Be-
dingungen fiir das Auftreten des NaCl-Typs auf sol-
chen Unterlagen genauer untersucht und folgendes



